Problem A. 12

Show that the rows and columns of a unitary matrix constitute orthonormal sets.

Solution

A unitary matrix is a matrix whose inverse is equal to its hermitian conjugate.

$$
\mathrm{U}^{-1}=\mathrm{U}^{\dagger}
$$

This means that the identity matrix is obtained whether one premultiplies U by U^{\dagger} or postmultiplies U by U^{\dagger}.

$$
U^{\dagger} U=I \quad U U^{\dagger}=1
$$

Consider element $i j$ on both sides.

$$
\begin{array}{rlrl}
\left(\mathrm{U}^{\dagger} \mathrm{U}\right)_{i j} & =\mathrm{I}_{i j} & \left(\mathrm{UU}^{\dagger}\right)_{i j} & =\mathrm{I}_{i j} \\
\sum_{k=1}^{n} U_{i k}^{\dagger} U_{k j} & =\delta_{i j} & \sum_{k=1}^{n} U_{i k} U_{k j}^{\dagger} & =\delta_{i j} \\
\sum_{k=1}^{n} \widetilde{U}_{i k}^{*} U_{k j} & =\delta_{i j} & \sum_{k=1}^{n} U_{i k} \widetilde{U}_{k j}^{*}=\delta_{i j} \\
\sum_{k=1}^{n} U_{k i}^{*} U_{k j} & =\delta_{i j} & \sum_{k=1}^{n} U_{i k} U_{j k}^{*} & =\delta_{i j} \\
\sum_{k=1}^{n} U_{k i}^{*} U_{k j} & =\delta_{i j} & \sum_{k=1}^{n} U_{j k}^{*} U_{i k} & =\delta_{i j} \\
U_{1 i}^{*} U_{1 j}+U_{2 i}^{*} U_{2 j}+\cdots+U_{n i}^{*} U_{n j} & =\delta_{i j} & U_{j 1}^{*} U_{i 1}+U_{j 2}^{*} U_{i 2}+\cdots+U_{j n}^{*} U_{i n} & =\delta_{i j}
\end{array}
$$

This finite sum on the left is the inner product of the $n \times 1$ column vectors consisting of the elements in column i and column j of U . The finite sum on the right is the inner product of the $1 \times n$ row vectors consisting of the elements in row j and row i of \mathbf{U}.

$$
\left\langle C_{i} \mid C_{j}\right\rangle=\delta_{i j} \quad \begin{aligned}
\left\langle R_{j} \mid R_{i}\right\rangle & =\delta_{i j} \\
\left\langle R_{j} \mid R_{i}\right\rangle^{*} & =\delta_{i j}^{*} \\
\left\langle R_{i} \mid R_{j}\right\rangle & =\delta_{i j}
\end{aligned}
$$

Therefore, the rows and columns of a unitary matrix constitute orthonormal sets.

